Multiple functionalities of reduced flavin in the non-redox reaction catalyzed by UDP-galactopyranose mutase.

نویسندگان

  • Pablo Sobrado
  • John J Tanner
چکیده

Flavin cofactors are widely used by enzymes to catalyze a broad range of chemical reactions. Traditionally, flavins in enzymes are regarded as redox centers, which enable enzymes to catalyze the oxidation or reduction of substrates. However, a new class of flavoenzyme has emerged over the past quarter century in which the flavin functions as a catalytic center in a non-redox reaction. Here we introduce the unifying concept of flavin hot spots to understand and categorize the mechanisms and reactivities of both traditional and noncanonical flavoenzymes. The major hot spots of reactivity include the N5, C4a, and C4O atoms of the isoalloxazine, and the 2' hydroxyl of the ribityl chain. The role of hot spots in traditional flavoenzymes, such as monooxygenases, is briefly reviewed. A more detailed description of flavin hot spots in noncanonical flavoenzymes is provided, with a focus on UDP-galactopyranose mutase, where the N5 functions as a nucleophile that attacks the anomeric carbon atom of the substrate. Recent results from mechanistic enzymology, kinetic crystallography, and computational chemistry provide a complete picture of the chemical mechanism of UDP-galactopyranose mutase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical Mechanism of UDP-Galactopyranose Mutase from Trypanosoma cruzi: A Potential Drug Target against Chagas' Disease

UDP-galactopyranose mutase (UGM) is a flavoenzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, the precursor of galactofuranose (Galf). Galf is found in several pathogenic organisms, including the parasite Trypanosoma cruzi, the causative agent of Chagas' disease. Galf) is important for virulence and is not present in humans, making its biosynthetic pathway an at...

متن کامل

Noncanonical Reactions of Flavoenzymes

Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel ch...

متن کامل

In Crystallo Capture of a Covalent Intermediate in the UDP-Galactopyranose Mutase Reaction

UDP-galactopyranose mutase (UGM) plays an essential role in galactofuranose biosynthesis in pathogens by catalyzing the conversion of UDP-galactopyranose to UDP-galactofuranose. Here we report the first crystal structure of a covalent intermediate in the UGM reaction. The 2.3 Å resolution structure reveals UDP bound in the active site and galactopyranose linked to the FAD through a covalent bon...

متن کامل

Structure, mechanism, and dynamics of UDP-galactopyranose mutase.

The flavoenzyme UDP-galactopyranose mutase (UGM) is a key enzyme in galactofuranose biosynthesis. The enzyme catalyzes the 6-to-5 ring contraction of UDP-galactopyranose to UDP-galactofuranose. Galactofuranose is absent in humans yet is an essential component of bacterial and fungal cell walls and a cell surface virulence factor in protozoan parasites. Thus, inhibition of galactofuranose biosyn...

متن کامل

X-ray crystallography reveals a reduced substrate complex of UDP-galactopyranose mutase poised for covalent catalysis by flavin.

The flavoenzyme uridine 5'-diphosphate galactopyranose mutase (UGM or Glf) catalyzes the interconversion of UDP-galactopyranose and UDP-galactofuranose. The latter is a key building block for cell wall construction in numerous pathogens, including Mycobacterium tuberculosis. Mechanistic studies of UGM suggested a novel role for the flavin, and we previously provided evidence that the catalytic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Archives of biochemistry and biophysics

دوره 632  شماره 

صفحات  -

تاریخ انتشار 2017